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Aquaculture is incessantly infected with various types of micro‐or‐
ganisms from different origin, including bacteria. Immunostimulants 
are profusely and efficiently used as feed additives in aquaculture 
(Dawood, Koshio, Abdel‐Daim, & Van Doan, 2019; Dawood, Koshio, 
& Esteban, 2018). Lipopolysaccharide (LPS) is a product of gram‐neg‐
ative bacteria cell wall, act as a potent immunomodulator of innate 
immune response (Bishop, 2005; Raetz & Whitfield, 2002), which 
is characterized by a production of proinflammatory cytokines, and 
reactive oxygen species (ROS) (Abo‐Al‐Ela, 2018b; West & Heagy, 
2002). Once the production of ROS exceeds the cellular antioxidant 
capacity (Agnisola, 2005; Palumbo, 2005), it leads to oxidative stress 
(Feng, Zhang, Zheng, Xie, & Ma, 2008; Halliwell & Whiteman, 2004) 
that results in severe cellular injury (i.e. lipid, protein and DNA de‐
structions) (Abo‐Al‐Ela, 2019; Abo‐Al‐Ela, El‐Nahas, Mahmoud, & 
Ibrahim, 2017b; Mujahid et al., 2007). This injury shifts cellular net 
charge and disturbs cellular osmotic pressure that in turn result in 
swelling of cell and eventually cell death (van Hoorn et al., 2001). 
The deleterious effect of excessive ROS is balanced by many cellular 
defence activities, including antioxidant defence mechanisms (Paital 
& Chainy, 2010). The antioxidant defence system works to keep ROS 
at lower levels (Paital & Chainy, 2010) by improving the efficiency 
of the mitochondrial electron chain (Fazio, Piccione, Saoca, Caputo, 
& Cecchini, 2015). The main molecules of the antioxidant defence 

network are three antioxidant enzymes: superoxide dismutase 
(SOD), glutathione peroxidase (GPx) and catalase (CAT), which they 
inhibit ROS production by eliminating their precursors (Surai, 2016).

Fish, including grey mullet, Mugil cephalus have an ecologi‐
cal and a socio‐economic relevance in many countries, including 
Egypt (Abo‐Al‐Ela, 2018a; Abo‐Al‐Ela, El‐Nahas, Mahmoud, & 
Ibrahim, 2017a). Fish are highly susceptible to oxidative stress 
compared with other species due to their habitats (Birnie‐Gauvin, 
Costantini, Cooke, & Willmore, 2017; Francesco Fazio et al., 2013). 
The aquatic environment receives a daily substantial amount of 
environmental pollutants that may cause oxidative stress in 
aquatic organisms via free radical and ROS‐involved pathways 
(Valavanidis, Vlahogianni, Dassenakis, & Scoullos, 2006). Mullet 
is highly sensitive to environmental changes that could affect its 
physiological functions, such as blood fluidity and oxygen trans‐
port (Lee & Pan, 2003). In addition, mullet is a bottom feeder, 
which this feeding habit increases the risk of getting stressed 
through exposure to deleterious materials, such as heavy metals 
(Fazio et al., 2015; Gorbi, Baldini, & Regoli, 2005). Stocking density 
in fish rearing was found to modulate oxidative status (Dawood, 
Shukry, et al., 2019). Although many studies have demonstrated 
the physiological response of grey mullet to oxidative stress of en‐
vironmental pollutions (Akbary, 2018; Lee & Pan, 2003; Min, Ahn, 
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& Kang, 2016), there is a lack of knowledge regarding its response 
following microbial infection. Thus, the aim of the current study 
was to examine the oxidative stress response following injection 
of LPS with different doses in grey mullet. This was achieved by 
measuring the antioxidant capacity of SOD and CAT enzymes, leu‐
cocyte count as well as heterophils/lymphocytes (H/L) ratio.

A total of 240 healthy juvenile grey mullet, Mugil cephalus with 
an average body weight 9 ± 0.5 g were obtained from a commer‐
cial fish farm, Kafrelsheikh governorate, Egypt. Fish were randomly 
allotted into 4 treatment groups (60 fish each which allocated into 
2 replicates). Fish were kept in glass aquaria (90 × 50 × 35 cm) at a 
temperature 28 ± 2°C and a pH 7.7 ± 0.2 and supplied with contin‐
uous aeration. The glass aquaria were cleaned daily, and about 50% 
of water was replaced with clean dechlorinated tap water. Fish were 
fed at 3% of live body weight per day.

Figure 1 shows the experimental design of the current study. 
Briefly, following the acclimation period (2 weeks), each group of 
fish were intraperitoneally injected with LPS and normal saline. First 
group (1st) was injected with normal saline (control group), while, 
2nd, 3rd and 4th groups were injected with LPS at concentrations of 
1, 10 and 100 µg/kg fish weight respectively.

Samples were collected at five different time postinjection (6, 
12, 24 and 48 hr and one week postinjection). Fish (n = 6) from each 
treatment group (3 fish/replicate) were randomly selected. Blood 
samples were collected by puncturing the caudal vein into tubes con‐
tain anticoagulant (EDTA). After that, fish were carefully dissected 
and liver samples were taken from each fish, and subsequently kept 
at −20°C for measuring the antioxidant capacities.

A drop of blood was smeared on glass slide, left to dry and fixed 
by methyl alcohol for 3–5 min, then stained by Giemsa for 20 min 
according to Houwen (2002). Then, slides were rinsed with water, 
covered by filter papers and left to dry. Blood films were examined 
with a light microscopy using an oil immersion objective. The per‐
centage of each type of blood cells were calculated.

Liver homogenates were prepared by homogenization in sterile 
cold potassium phosphate buffer (pH 7). Clear supernatant was ob‐
tained from homogenates via spinning at 4,020 × g for 15 min at 4°C; 
then, the supernatant was stored at −20°C for the further parame‐
ters analysis. Antioxidant enzymes activities (U/g tissue) of super‐
oxide dismutase (SOD) and catalase (CAT) were determined using a 
commercial kit (Biodiagnostic ‐ SD2521, Egypt), and a UV‐VIS spec‐
trophotometer according to the method described by (Aebi, 1984). 
SOD activity was measured spectrophotometrically at 560 nm over 
5 min. Regarding CAT, in brief, it reacts with a known amount of 
H2O2 for 1 min; and then a CAT inhibitor used to stop the reaction. 
Then, the remaining H2O2 reacts with 4‐aminophenazone and 3,5‐
Dichloro‐2‐hydroxybenzene sulphonic acid to form a chromophore 
in the presence of peroxidase. Finally, the absorbance can be mea‐
sured at 240 nm over 3 min, in which colour intensity is inversely 
proportional to the levels of CAT.

Data were analysed using GraphPad Prism 6 software 
(GraphPrism Software, Inc.). Two‐way ANOVA followed by 
Tukey's multiple comparison was run to examine statistically sig‐
nificant differences at p  <  .05 according to the following model: 
Yij = μ + Li + Tj + (TS)ij + εij, where Yij is the measured dependent 
variables, μ is the overall mean, Li is the effect of different LPS doses, 
Tj is the effect of time factor, (LT)ij is the interaction between i and j, 
and εij is the random error. The results were stated as mean ± SE and 
were considered significant at p < .05.

Lipopolysaccharide modulated the differential leucocyte count 
at different time interval postinjection (Table S1). LPS significantly 
changed the lymphocytes count at different doses and times post‐
injection without interaction between LPS doses and time (p = .002 
for LPS; p = .015 for time; p > .05 for interaction). After 6 hr post‐
injection, LPS at doses of 1 and 100 µg significantly increased the 
lymphocytic counts compared with normal saline and 10  µg LPS 
(p < .05). On the other side, with the time progress after the injec‐
tion, time factor was significantly associated with a marked decrease 

F I G U R E  1  The experimental design of 
the current study
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in the lymphocytic count especially after one week of injection 
(p < .05). Different doses of LPS and time of sampling significantly 
changed the heterophils count without interaction (p = .007 for LPS; 
p =  .025 time; p >  .05 for interaction). After 6 hr, injecting LPS at 
doses of 1, 10 and 100 µg/kg fish weight significantly lowered the 
heterophils count compared with normal saline (p < .05). However, 
at 12, 24 and 48 hr, the doses of 1 and 100 µg distinctly decreased 
the heterophils count compared with normal saline and 10 µg of LPS 
(p < .05). After one week of LPS, stimulation did not change the het‐
erophils count (p >  .05). The different doses of LPS as well as the 
time factor did not had any effect on monocyte, eosinophil and ba‐
sophil counts (p > .05).

Lipopolysaccharide markedly altered the heterophils/lympho‐
cytes (H/L) ratio (Figure 2) in all times of sampling without interac‐
tion. LPS (except for the dose 10 µg after 12 hr) significantly reduced 
the H/L ratio at 6 and 12 hr compared with normal saline (p < .05). 
After 24 hr postinjection, 100 µg LPS was the only dose that signifi‐
cantly lowered H/L ratio among the treatments (p < .05). While, after 
48 hr following injection, there was a significant reduction in the H/L 
ratio in all dose of LPS compared with normal saline (p < .05). After 

one week, LPS did not change the H/L ratio (p > .05). In addition, at 
dose 1 µg, there was a marked increase in the H/L ratio after one 
week of injection compared with the H/L ratio at 6 and 12 hr post‐
injection (p  <  .05). Additionally, after one week of injection, there 
was a significant increase in the H/L ratio in the case of 10 µg LPS 
compared with 6 hr postinjection (p < .05). Likewise, after one week, 
100 µg LPS‐injected fish showed a distinct increase in the H/L ratio 
compared with 6, 12 and 24 hr (p < .05).

Figure 3 shows the effect of different doses of LPS, and time 
effect postinjection on the CAT activities in the liver. Different 
LPS concentrations and time intervals postinjection significantly 
changed the CAT activities with a marked interaction. After 6  hr, 
there were no changes in the CAT activities (p > .05). However, after 
12, 24 and 48 hr, there were significant reductions in CAT activities 
in doses of 10 and 100 µg compared with normal saline and 1 µg LPS 
(p < .05). While after one week postinjection, there were no changes 
in the CAT activities (p >  .05). Moreover, with the passage of time 
and at the level of the same LPS dose, there was an alteration in the 
CAT activities. Additionally, at the dose 1 µg, the highest activity of 
CAT was found at 24 hr (p < .05). However, the activity of CAT was 

F I G U R E  2  The effects of different doses of LPS and time intervals on the heterophils/lymphocytes (H/L) ratio. The results are presented 
as means ± SE. Lowercase letters indicate significant differences among different treatments at the same time. While, uppercase letters 
indicate significant differences between different times at the same dose. The p‐values of two‐way ANOVA were as follows: LPS, <0.0001; 
time, <0.0001; LPS × time, 0.0054

F I G U R E  3  The effects of different doses of LPS and time intervals on the catalase (CAT) enzyme activities (U/g tissue) in the liver of 
grey mullet, Mugil cephalus. The results are presented as means ± SE. Lowercase letters indicate significant differences among different 
treatments at the same time. While, uppercase letters indicate significant differences between different times at the same dose. The p‐
values of two‐way ANOVA were as follows: LPS, <0.0001; time, <0.0001; LPS × time, 0.0054
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significantly declined at 48 hr, and the decrease was continued till 
one week postinjection (p < .05). Also, in the case of 10 and 100 µg, a 
significant reduction in the CAT activities was noticed with the prog‐
ress of time (p < .05).

Testing the effect of different LPS doses and time intervals 
postinjection on the hepatic SOD activities (Figure 4) indicated 
a significance of both factors with a significant interaction. After 
6  hr postinjection, there was no changes in the SOD activities 
(p >  .05). While, after 12 hr postinjection, a significant reduction 
in the level of SOD was noticed in dose 100 µg compared with 
other treatments (p < .05). However, this effect was disappeared 
after 24 hr postinjection, hence, the SOD activities did not show 
any changes in all groups (p > .05). Nevertheless, at 48 hr and one 
week postinjection, significant decreases of SOD activity were de‐
tected in doses of 10 and 100 µg compared with other treatments 
(p < .05).

Furthermore, there was a change in the SOD activities within 
the same treatment. In the case of normal saline and 1 µg LPS, sig‐
nificant declines in the level of SOD were recorded at 48  hr and 
one week postinjection (p < .05). Also, the SOD activities were sig‐
nificantly dropped with the passage of time in the dose of 10 and 
100 µg. Where at 24 and 48 hr, and one week, it showed a significant 
low level compared with 6 and 12 hr (p < .05).

Inflammation and oxidative stress are strictly correlated. 
Oxidative stress is associated with excessive production of ROS, 
which may exceed the antioxidant capacity (Jiang et al., 2017). 
Bacterial infection causes an inflammatory response, and is usually 
associated with secretion of many bacterial endotoxins such as LPS, 
which is a main component of the gram‐negative bacterial wall that 
is able to trigger and accelerate oxidative stress in mammals and fish 
(Bai & Gu, 2017; Bich Hang, Nguyen, & Kestemont, 2016; Li et al., 
2016). In mice, it has been shown that LPS induces oxidative stress as 
a result of decreasing the antioxidative enzymes activity, including 
SOD, CAT, glutathione (GSH) and GPx (Jiang et al., 2016). However, 
there are no evidences regarding the same activities on fish re‐
sponse, particularly grey mullet.

The assessment of stress response can be done by measuring the 
levels of stress indicator hormones, such as plasma glucocorticoids, 
including corticosterone (Davis, Maney, & Maerz, 2008). However, 
measuring these hormones was clearly associated with many draw‐
backs. For example, their levels upsurge rapidly following animal 
handling, result in difficulties to obtain baseline measurements or 
precise results (Romero & Reed, 2005). Therefore, it is necessary 
to use alternative approaches, such as assessing other haematolog‐
ical parameters, for example, the relative counts of white blood cell 
(WBC) (Davis et al., 2008). Any particular changes in leucocyte count 
are related to stress hormone levels. Besides, this approach provides 
some advantages over direct assessment of the glucocorticoid in 
plasma, which leucocyte population takes a relatively much time to 
be changed, as well as it is relatively inexpensive (Davis et al., 2008). 
In the current study, increasing the dose of LPS alongside with the 
passage of time postinjection was associated with the modulation 
of the differential leucocyte counts that resulted in increases of the 
H/L ratio. The increases in H/L ratio and leucocytes may be an indi‐
cator for a stress from the LPS; in particular, this effect was increased 
with increasing the dose of LPS, and continued with the progress of 
time (Dhabhar, Miller, McEwen, & Spencer, 1996). In addition, the 
increased H/L ratio may be resulted from increasing transmigration 
of lymphocytes from the circulation to tissues, such as spleen and 
lymph nodes, as well as heterophil influxes to circulation as a result 
of the increases in stress hormones (Dhabhar, 2002).

Antioxidant enzymes are good biomarkers for oxidative stress; 
they play a crucial role in competing the damaging effects of oxi‐
dative stress that results from over production of ROS (Kurhalyuk 
& Tkachenko, 2011). Where they are key components that protect 
cells, and attempts to save species’ survivability during oxidative 
stress (Lushchak & Bagnyukova, 2006). In the present investiga‐
tion, it was found that LPS treatment was associated with a marked 
reduction in the hepatic CAT activities in a dose‐dependent man‐
ner especially at doses of 10 and 100 µg. This effect was also seen 
over the time after the LPS injection. Presumably, the reduction in 
the CAT activities was resulted from the inhibitory action of the 

F I G U R E  4  The effects of different LPS doses and exposure times on the sodium oxide dismutase (SOD) enzyme activities (U/g tissue) 
in the liver of grey mullet, Mugil cephalus. The results are presented as means ± SE. Lowercase letters indicate significant differences among 
different treatments at the same time. While, uppercase letters indicate significant differences between different times at the same dose. 
The p‐values of two‐way ANOVA were as follows: LPS, 0.0035; time, 0.023; LPS × time, 0.0119
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overproduced ROS, suggesting an increase in the stress status of 
grey mullet juveniles (Pigeolet et al., 1990). This finding was in ac‐
cordance with Abdel‐Daim et al. (2019), Chitra and Maiby (2014), 
Faheem, Jahan, and Lone (2016) and Wu, Xu, Shen, Qiu, and Yang 
(2011), which they reported a reduction in the hepatic CAT activity 
in tilapia exposed to sublethal doses of bisphenol‐A and cadmium, 
and intoxication with zinc oxide nanoparticles. Other possible ex‐
planation, it may be from exhaustion or damage of the hepatic tissue 
(Abdel‐Daim et al., 2019; Faheem et al., 2016). To further explain, 
low doses of LPS or even after few hours postinjection in high doses, 
fish might be able to accommodate or curb the stress especially after 
24 hr, however, when time goes by, fish become unable to overcome 
this (Faheem et al., 2016).

Similar records were detected in the SOD activities. Possibly, 
the decline in the SOD activities is associated with ROS‐induced 
hepatic peroxidation, and a damage in the hepatic tissue (Velkova‐
Jordanoska, Kostoski, & Jordanoska, 2008) or extra‐generation of 
ROS resulted from lipid peroxidation (Akbary, Sartipi Yarahmadi, & 
Jahanbakhshi, 2018). Similar results were obtained by Akbary et al. 
(2018), who documented a reduction in the SOD activities in grey 
mullet exposed to copper oxide.

Our results showed a significant alteration in antioxidative re‐
sponses to LPS in the grey mullet. There was a distinct variation in 
the H/L ratio, and antioxidant enzymes activities, CAT and SOD a 
dose‐ and time‐dependent manners. Future work on other inflam‐
matory responses, such as fractionation of serum proteins or rela‐
tive gene expression analysis could provide clearer image about the 
effect of LPS on the antioxidant capabilities and immune response 
in grey mullet.
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